Reg. No: SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS) **B** Tech II Year I Semester Supplementary Examinations Nov/Dec 2019 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (CSE & CSIT) Time: 3 hours Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I 1 **a** Using replacement process, Prove that $P \to (Q \to P) \Leftrightarrow \neg P \to (P \to Q)$. 5 M **b** Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x).$ 7 M 2 7 M **a** Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$. **b** Show that $((P \rightarrow Q) \rightarrow Q) \Rightarrow P \lor Q$ without constructing truth table. 5 M UNIT-II **a** Determine A/R, when A = $\{1, 2, 3, 4\}$ and R = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3),$ 3 6 M (3, 3), (4, 4) be an equivalence relation on R. 6 M **b** The necessary and sufficient condition for a non-empty sub-set H of a Group (G, *) to be a sub group is $a \in H$, $b \in H \Longrightarrow a * b^{-1} \in H$. OR **a** If $f: R \to R$ such that f(x) = 2x + 1 and $g: R \to R$ such that g(x) = x/3 then verify 4 7 M that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **b** On the set Q of all rational numbers with operation * is defined by a*b=a+b-ab. Show 5 M that this operation on Q forms a commutative monoid. UNIT-III a Consider a set of integers from 1 to 250. Find how many of these numbers are divisible by 3 5 6 M or 5 or 7. Also indicate how many are divisible by 3 or 7 but not by 5 and divisible by 3 or 5. **b** Out of 9 girls and 15 boys how many different committees can be formed each consisting of 6 M 6 boys and 4 girls? OR 6 **a** How many solutions does the equation $x_1 + x_2 + x_3 = 17$ have, subject to the constraints (i) 6 M x_1, x_2, x_3 are non-negative integers. (ii) $x_1 \ge 1, x_2 \ge 2$ and $x_3 \ge 3$. **b** How many ways can the letters of the word "MATHEMATICS" are arranged. 6 M (i) How many of them begin with M and end with S. (ii) How many of them do not begin with M but end with S. **UNIT-IV a** Obtain the sequence generated by (i) $f(x) = 2e^x + 3x^2$ (ii) $f(x) = 7e^{8x} - 4e^{3x}$ 7 7 M **b** Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2} = 0$ for $n \ge 2$ 5 M and $a_0 = -3$, $a_1 = -10$. OR

- **a** Solve $a_n 9 a_{n-1} + 20 a_{n-2} = 0$ with initial conditions $a_0 = -3$, $a_1 = -10$. 8 5 M
 - 7 M **b** Solve the recurrence relation $a_{n+2} - 2a_{n+1} + a_n = 2^n$ with initial condition $a_0 = 2$ and $a_1 = 1$.

Q.P. Code: 16CS507

UNIT-V

- **9 a** Let G be a 4 Regular connected planar graph having 16 edges. Find the number of regions **6** M of G.
 - **b** Verify the following pairs of graphs are isomorphic or not ?

10 a Identify whether the following pairs of graphs are isomorphic or not?

b Draw the graph represented by given Adjacency matrix

(i)	1	2	0	1	(ii)	1	0	2	1	
	2	0	3	0		0	1	1	2	
	0	3	1	1		2	1	1	0	
	1	0	1	0_		1	2	0	1	

*** END ***

6 M

6 M

6 M